UPDATE ON:

Mesospheric/Upper Stratospheric Temperature and Related Datasets (MUSTARD):

Producing a long-term record from limb sounding radiometers and occultation instruments

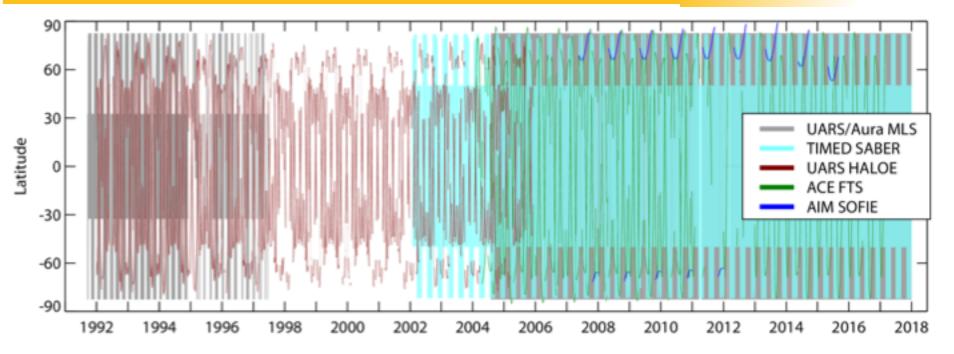
Michael J. Schwartz and the MUSTARD team

Jet Propulsion Laboratory, California Institute of Technology

Workshop of the SPARC Atmospheric Temperature Change Activity

June 27 2018

Paris, France

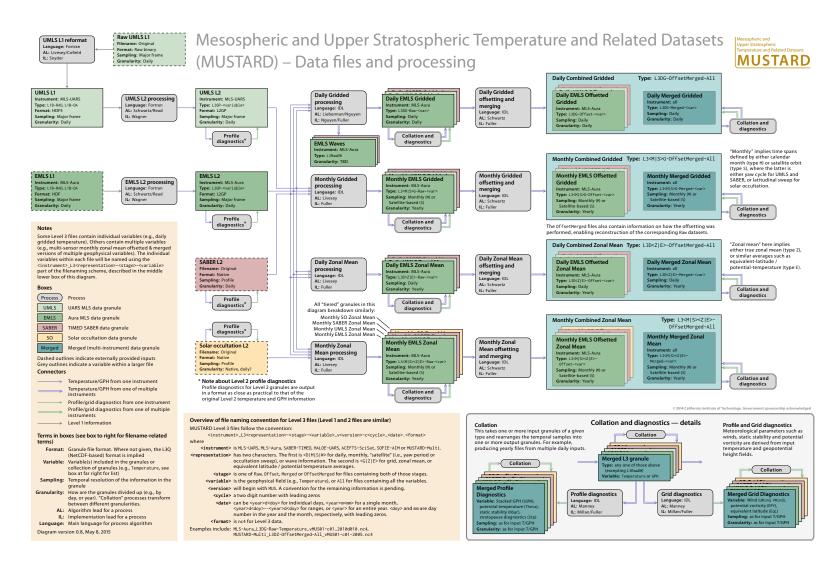

© 2018. All rights reserved

Mesospheric and Upper Stratospheric Temperature and Related Datasets

- ➤ MUSTARD is a JPL-led, MEaSUREs-funded project to produce a long-term observational record of US/M temperature and GPH.
 - Three Limb Emission Radiometers:
 - UARS MLS (1992–1997), Aura MLS (2004–present) and TIMED SABER (2002–present)
 - provide near-global, daily, day & night, along-orbit coverage -->daily/monthly maps
 - good vertical resolution in the middle atmosphere compared to nadir sounders
 - Three Solar Occultation instruments:
 - UARS HALOE (1992–2005), ACE-FTS (2004–present), AIM SOFIE (2007–present)
 - provides excellent precision and vertical resolution
 - sparse latitudinal and temporal coverage is limited to one sunrise and sunset per orbit
 - US/M temperature data sets are generally high-quality and well-characterized
 - HALOE operational period overlaps that of all three emission radiometers, providing a potential transfer standard
 - Odin SMR, UARS ISAMS, COSMIC and LIDAR could provide correlative data.
 - SSU, SSMIS were not included (they lacked definitive temperature products)

Temporal and Latitudinal Coverage of Observations

- Emission Radiometers: provide daily, near-global coverage
 - UARS, TIMED observe high latitudes in only one hemisphere at a time, yawing ~monthly
 - Aura is sun synchronous while UARS and TIMED observation times precess
- Solar occultation instruments:
 - HALOE and ACE-FTS sunrises and sunsets move through latitudes (~monthly)
 - AIM SOFIE observes only high latitudes.


- Nathaniel J. Livesey (PI), Michael J. Schwartz (Co-I), William G. Read (Co-I), Luis Millan
 - MLS Science Team members at JPL
- Gloria L. Manney (Co-I) Northwest Research Assoc./NMT, Luis Millan
 - Derived meteorological fields leads
- Ruth Lieberman (CO-I) GATS inc., Vu A. Nguyen, Univ. of Colorado/GATS Inc. Luis Millan, Gloria Manney, Michael Schwartz
 - Spectral decomposition and synoptic mapping leads
- John Anderson, (Co-I) Hampton University
- Collaborators
 - James M. Russell (Hampton University) AIM and SABER PI
 - Kaley A. Walker, (University of Toronto) ACE-FTS deputy PI
 - I. Stuart McDermid, (JPL) Ground-based LIDAR correlative data
 - Karl Hoppel (Naval Research Laboratory)

- New UARS MLS and Aura MLS Level-2 temperature (profiles at measurement locations)
 - Definitive UARS MLS US/M temperature, properly accounting for Zeeman splitting of lines by the geomagnetic field, leveraging Aura MLS operational code
 - "Independent" Aura MLS US/M temperature using trendless, climatological a priori
- Produce monthly maps and daily and monthly zonal means from the three radiometer data sets and monthly zonal means from the three occultation data sets
- ➤ Use "Salby" zonal wave analysis of the radiometer data, accounting for longitude/time precession of zonal observations:
 - characterize diurnal-scale zonal variability (tides, multiday zonal waves)
 - reconstruct synoptic (00Z, 12Z) daily maps.
- ➤ Identify biases between instruments, using Fourier components to reconstruct radiometer observations at correlative observation times/locations and using HALOE observations (which overlap the three radiometers) as a transfer standard
- > Produce bias-corrected "merged" versions of all six temperature records
- Produce derived fields including GPH, winds, PV, static stability, stratopause height.

MUSTARD Deliverables and Production Flowchart

Current State of the project

- Modified level-2 is complete for the Aura MLS record through March, 2018
 - In addition to GPH-StdProd and Temperature-StdProd, Swaths have been added for Merra-2 products sampled as MLS, Apriori and GPH-onRefGPHMerra2_56hPa
 - Initial comparisons with Aura MLS standard v04.2x processing suggest that trends between the two at recommended retrieval levels, if they exist, are less than 0.1K/decade.
 - Some differences arise from poor initial guesses of tangent-point pressure used in selecting radiances used in vMUS01.50
 - Some differences result from MUSTARD ozone retrieval not being constrained by ozone bands used in production v4
- Level-2 is nearly complete for UARS MLS (probably done by the end of this meeting)
- Level-3 preliminary "binning" algorithms have been run for EMLS, SABER and the occultation instruments and will be run for umls as soon as level-2 is complete and has undergone preliminary inspection

L3DZ: Level 3 Daily Zonal (UMLS, SABER, EMLS)

L3MZ: Level 3 Monthly Zonal (All)
L3MG: Level 3 Monthly Gridded (EMLS)

L3SG: Level 3 Satellite Period Gridded (SABER, UMLS on Satellite Yaw-cycle "months")
L3SZ: Level 3 Satellite Period Zonal (SABER, UMLS on Satellite Yaw-cycle "months)

For comparison of overlaps of satellite instruments, emls is being run on SABER and UMLS months as well

Preliminary Level-3 "Salby" algorithms were run on EMLS and a second iteration is currently running

L3DGM: Level 3 Wave Coefficient (UMLS, SABER, EMLS,)

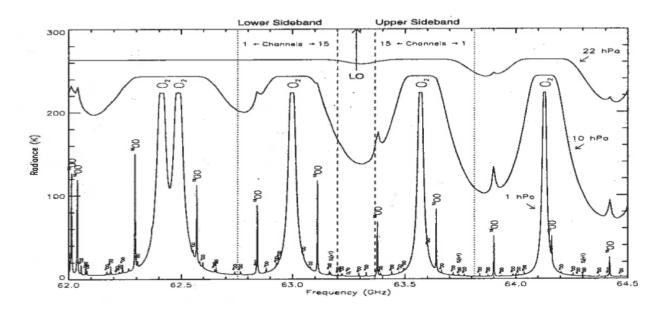
L3DGD: Level 3 Daily Gridded Synoptic (00Z 12Z) Reconstruction

Current State of the project

- ➤ Inspection is ongoing. We are just transitioning from mechanics of getting software producing data to more subtle validation and science. We hope to have useful products later in 2018.
- ➤ I am just starting to look at bias adjustments for harmonization of the overlapping data sets. Complete runs of level-3 will greatly facilitate this process.
 - I read with interest Robin Wing et al. 2018 AMTD, which compares EMLS and SABER with the OHP lidar.
 - I will be using an improved emls GPH product in the conversion from height to pressure (MUSTARD products are on pressure surfaces), but I don't believe that I am going to be able to justify (from an instrument science perspective) the >km scale height adjustment of emls that were shown to align EMLS and LIDAR stratopauses.
 - This will be an area of near-term work, and I will be looking at the implications of mls Averaging Kernels
 - Comparison of radiometer data (umls, saber, emls) with correlative data will be done
 with reconstruction at measurement locations, as possible. Salby coefficients used
 in reconstruction must be processed and validated.
 - Reconstruction becomes fraught late in umls mission, as scan stalls make data increasingly sparse. I am grappling with how to quantify the quality of the reconstruction.

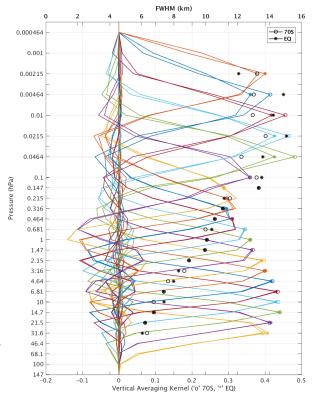
)

MUSTARD PROCESSING STATUS (as of June 26, 2018)


NASA
The state of

	EMLS	UMLS	SABER	SOFIE	ACE-FTS	HALOE	Multi-
	(2004 -2018)	(1991 – 2001)	(2002-2018)	(2007-2013)	(2003-2017)	(1991-2004)	sensor
Level 1 (L1BOA, L1BRAD)	MLS V4.20 – V4.23	V1.4 9/18/1991- 2001	n/a	n/a	n/a	n/a	n/a
Level 2 (L2DGG, L2DGM, L2FWG)	vMUS01.50 8/2/2004- 3/31/2018	vMUS01.50 1991: 104/105 1992: 355/355 1993: 342/344 1994: 257/257 1995: 202/202 1996: 214/215 1997: 0/71	n/a	n/a	n/a	n/a	n/a
Level 3 yearly (L3DZ, L3MG, L3MZ)	V1.5 2005-2010, 2013-2017		V1.0 2002-2006, 2008-2015	n/a	n/a	n/a	
Level 3 Yearly (L3MZ)	n/a	n/a	n/a	V1.0 2011-2012	V1.0 2005	V1.0 1991- 2004	n/a
Level 3 Daily (L3DG, L3DG- Wave)	V1.5 1/1/2005 - 3/31/2018 (Except: Jan-Apr, Nov- Dec 2006 Mar-Apr 2011, Jan-Feb 2012)	n/a	n/a	n/a	n/a	n/a	n/a
Level 3 Salby Method (L3DG, L3DG- Wave)	n/a			n/a	n/a	n/a	
Level 3 Satellite Period (L3SG, L3SZ)	n/a			n/a	n/a	n/a	

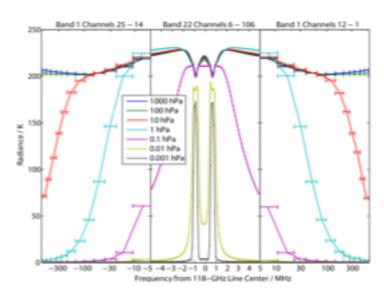
UARS MLS Temperature Retrieval


- ➤ UARS MLS observes two O₂ lines near 63 GHz in the 50—70 GHz band of O₂ spin-rotational lines.
- Coupling with the geomagnetic field breaks these two lines into 198 components (the 118-GHz line used by Aura MLS has 3)
- Mesospheric radiances depend significantly upon field strength and orientation, even though Zeeman components are not resolved by the 2-MHz wide UARS center filterbank channels.
- A fraction of our current computational resources is sufficient to reprocess UARS MLS level 2 with the "Aura" algorithm, including line-by-line, polarized radiative transfer with derivatives.
- > UARS views perpendicular to the satellite path, so no we can't do a 2D tomographic retrieval, but magnetic field gradients along the line of sight are modeled.
- ➤ UARS MLS 63 GHz FOV is ~2x broader than that for the Aura MLS 118 GHz observations

UARS MLS Level-2

- The reprocessing of the UARS MLS to produce temperature and GPH level-2 products (along track geophysical quantities) is complete for 1991-1995. 1996-1997 will be complete in early July, 2018.
- 1995-1997 are increasingly sparse due to the malfunction of the instrument scanning mechanism.
- Averaging kernels are not routinely produced, but the averaging kernels are reasonably stable with variations of retrieved profile and geomagnetic field.
- UMLS AVKs for recommended retrieval levels at the Equator and 70S are shown in the left plot.
- Resolution (FWHM) varies from ~6km in the lower stratosphere to ~14km in the mesosphere, and is shown with black dots using the scale at the top of panels.
- The previous UARS (v5)
 retrieval did not account for
 geomagnetic effects and
 recommended levels were
 restricted to the
 stratosphere. .
- Above and below the recommended levels, AVKs do not peak sharply at the desired atmospheric level.

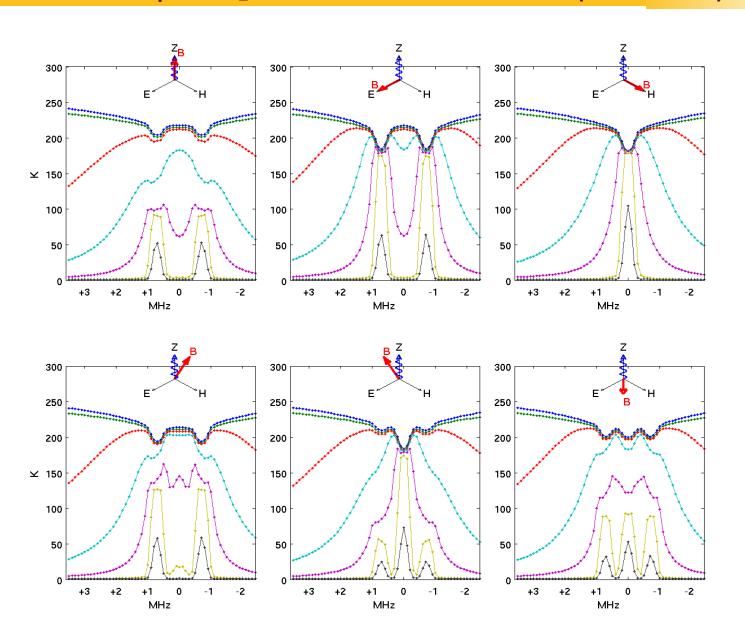
Aura MLS Temperature Level-2 Reprocessing

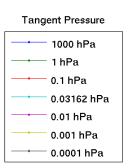


- Refinements to Aura MLS retrieval algorithms for MUSTARD reprocessing goals included:
 - ♦ Use of a trendless temperature a priori rather than GEOS-5 (done)
 - ♦ Better assumed O₂ mixing ratio (done)
 - Improved assumed geomagnetic model (attempted, made negligible improvement)
 - Extended forward-model 2D representation in the direction of the spacecraft to better account for saturated line centers

(Done. 8 profiles in representation basis on spacecraft side of tangent point led to less improvement than hoped)

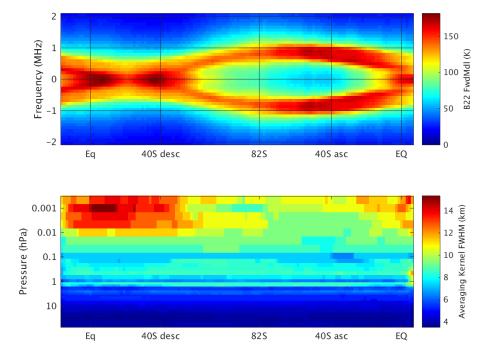
- ♦ Adjustment smoothing parameters (done)
- ♦ Attempt to improve internal consistency of saturated and hydrostatic temperatures (radiances still subsetted like v04.2x)

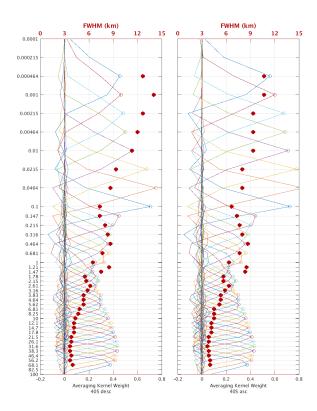

Typical high-latitude radiances showing two "sigma" Zeeman components for R1A orientation



Note extremely nonlinear frequency grid for B1 channels

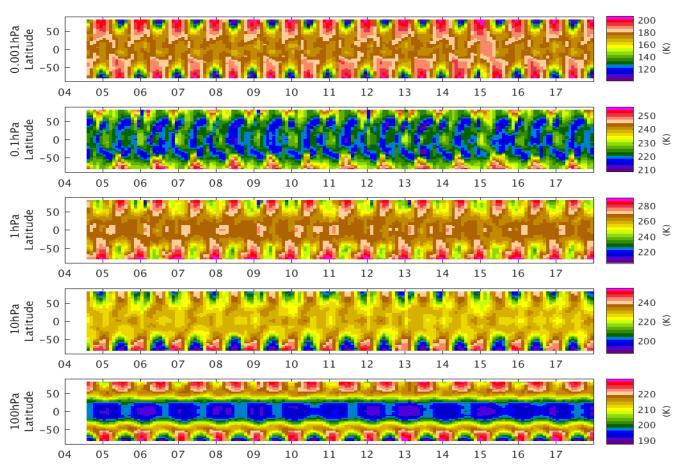
Geomagnetic Field Orientation Dependence of Zeeman-Split O₂ Line Limb Radiances (118-GHz)





Aura MLS Band 22 Radiances and Averaging Kernels

- Forward model radiances (upper left) show variability in Zeeman splitting around half orbit due to variability in viewing orientation relative to the geomagnetic field.
- The field is not a symmetric dipole and orientation changes at midlatitudes, ascending vs descending, leading to very different splitting
- AVK FWHM (lower left) can vary from 9—14 km in the mesopause region, even at the same latitude
- AVKs are shown for two passes through 40S in this half orbit chunk (lower right).



EMLS Calendar month zonal mean example

MUSTARD EMLS vMUS01.50 Temperature

I have tons of stuff to inspect!